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Abstract 

Jellyfish blooms predictably exacerbate the economic and ecological challenges coastal 

fisheries face globally. Effective fishery management relies heavily on predicting growth 

patterns alongside mitigating possible risks. This investigation initiates a framework 

utilizing machine learning to forecast the growth of jellyfish populations and their 

corresponding impact on coastal fisheries. The described system, JellyNet, is a 

convolutional neural network (CNN) that utilizes high-resolution remote-sensing satellite 

imagery captured by drones (UAVs). Jelly Net allows fisheries to act based on 

predictions, providing 6 to 8 hours of early detection and bloom event forecasting. A 

dataset derived from Croabh Haven, UK, and Pruth Bay, Canada, with 1,539 images, was 

annotated into two categories: 'Bloom present' and 'No bloom present,' which is essential 

for precise feature identification during bloom detection. Employing transfer learning 

featuring the VGG-16 architecture, JellyNet surpassed baseline models, achieving a 

pinnacle accuracy of 97.5%. Furthermore, the study analyzes the relationship between 

predicted bloom occurrences and subsequent changes in fish catch data, illustrating 

jellyfish blooms’ dominantly negative influence on productivity. This study reveals the 

mastery machine learning holds in predictive analysis and sustainable coastal fishery 

operations. 
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Introduction 

The problematic coastal ecosystems and 

industries' jellyfish blooms have had a 

massive impact globally and have grown 

significantly. Marine biodiversity and 

human activity together along coastlines 

are under threat due to the blooms being 

highly unpredictable and fleeting 

(Rahman et al., 2024; Zhang et al., 2024). 

Coastal fisheries are some of the most 

impacted due to jellyfish preying on fişh 

eggs, competing for zooplankton, 

damaging pescetarian devices, and more 

(Boopathy et al., 2024; Lucas, Graham 

and Widmer, 2012). Industrial facilities 

such as nuclear power and desalination 

plants are also affected due to the blooms 

naturally clogging water systems, leading 

to drops in productivity and massive 

financial implications (Wei-Liang and 

Ramirez, 2023; Kim et al., 2017). 

Agricultural and environmental 

anthropogenic factors are becoming more 

frequent and intense due to offshore 

warming which works in parallel with 

climate change offering no resistance to 

jellyfish expansion (Agarwal and Singh, 

2024; Sumithra and Sakshi, 2024). 

Overfishing and altered ecological 

balance work towards the increased 

jellyfish population and reduction of their 

predators and competitors (Kwon, Choi 

and Ryu, 2020). Exceedingly enhanced 

primary productivity and available food 

also work towards eutrophication due to 

agricultural runoff and the development 

of coastal lands (Chatterjee and Singh, 

2023). The negative impacts of the 

blooms augment with each passing day, 

underlining the importance of designing 

efficient forecasting and surveillance 

systems (Condon et al., 2013). 

Jellyfish blooms pose a threat to 

coastal fisheries. Small-scale fisheries 

often lack the technological and logistical 

resources needed to respond to the 

sudden changes in marine conditions 

during the blooms. This leads to 

unanticipated drops in their catch and 

income (Lucas, Graham and Widmer, 

2012) and (Bosch-Belmar et al., 2019). 

The economic impacts can spread 

throughout the region, where people's 

economic activities heavily depend on 

stable and reliable fishing. In addition, 

blooms may shift food web dynamics and 

species distributions, leading to 

additional ecological impacts, further 

complicating management of the 

fisheries (Hui et al., 2019; Cardoso, 

Monteiro and Mendes, 2021). Therefore, 

addressing predictions about blooms in 

conjunction with fisheries management 

could strengthen the adaptability and 

resilience of coastal communities. 

Recent developments in remote 

sensing technology have advanced ocean 

monitoring, since they offer real-time 

data on oceanic parameters. Modern 

imaging systems mounted on Unmanned 

Aerial Vehicles (UAVs) allow detailed 

viewing of coastal water jellyfish 

aggregations, which were not possible 

before (Lee, Yim and Spafford, 2012; 

Gorpincenko et al., 2020). These 

technological improvements 

notwithstanding, the analysis of the 

imagery collected by the UAV has to be 

done manually, which is slow and prone 

to error, making it unsuitable for most 

practical applications. This illustrates the 

need for automated data processing to 

improve efficiency and precision in 

monitoring jellyfish blooms (Uye, 2021; 

Suuronen et al., 2012) 
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Machine learning (ML), one of the 

artificial intelligence subdomains, has 

become an established tool for 

monitoring and predicting environmental 

changes. Various marine applications, 

such as mapping coral reefs, assessing 

fish stocks, and detecting harmful algal 

blooms, have successfully utilized 

convolutional neural networks (CNNs), a 

class of deep learning algorithms 

developed for image recognition (Cao 

and Jiang, 2024; Condon et al., 2013; 

Rathore and Shaikh, 2023). These models 

can identify intricate spatial relationships 

within enormous data sets and are ideal 

for high-jellyfish biomass imagery 

analyses. Nevertheless, despite 

significant advances in other fields, the 

use of deep learning for jellyfish bloom 

prediction remains quite limited 

(Gorpincenko et al., 2020; Henschke et 

al., 2023).   

Attempts have used species 

distribution models, satellite images, and 

hydrographic simulations to predict 

jellyfish blooms (Hui et al., 2019; 

Cardoso, Monteiro and Mendes, 2021). 

These methods do analyze the bloom 

phenomenon and deliver explanatory 

visualization. Still, they often do not offer 

the desired spatial and real-time 

resolution accuracy needed for effective 

routine operational use. In addition, many 

of the models used cannot account for 

environmental variability at local scales, 

which diminishes their reliability for 

predictive coastal applications 

(Chatterjee and Singh, 2023; Henschke et 

al., 2023). Combining deep learning and 

remote sensing with UAVs offers 

unparalleled flexibility for various 

marine settings and addresses the gaps 

left by the mentioned traditional models 

(Martin-Abadal et al., 2020; Kim et al., 

2016). 

We introduce JellyNet, a 

convolutional neural network model for 

detecting and predicting jellyfish blooms 

utilizing high-resolution UAV images. 

The model was trained on a dataset 

consisting of 1,539 images with labels 

derived from two coastal locations: 

Croabh Haven, UK, and Pruth Bay, 

Canada. Images were divided into 

‘Bloom present’ and ‘No bloom present’ 

to improve the model’s focus on patterns 

at 500 by 500 pixel resolution windows 

(Lucas, Graham and Widmer, 2012; 

Matsuoka, Nakashima and Nagasawa, 

2005). JellyNet utilizes transfer learning 

from VGG-16, achieving an effective 

75/25% training-to-testing split alongside 

extensive hyperparameter optimization 

and model tuning. The model reached a 

maximum accuracy of 97.5%, exceeding 

the benchmark performance and showing 

reliability against multiple environmental 

conditions (Marambio et al., 2021; 

Matsuoka, Nakashima and Nagasawa, 

2005).   

The relationship between predicted 

bloom phenomena and the productivity 

of fishery operations is also investigated. 

With catch data, we assess the direct 

economic effects of jellyfish blooms on 

coastal fisheries, contributing important, 

reliable evidence to support adaptive 

management frameworks. By combining 

impact evaluation and detection, this 

study addresses a significant gap in the 

literature, where the application of 

JellyNet goes beyond the scientific realm 

into the hands of fisheries managers and 

policymakers (Lucas, Graham and 

Widmer, 2012). 
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This research adds to the growing 

literature on integrating marine ecology 

and artificial intelligence. It demonstrates 

the critical role of machine learning in 

enhancing proactive environmental 

monitoring and management of coastal 

fisheries in the context of increasing 

ecological threats (Kim et al., 2016). This 

research intends to design a machine 

learning system that predicts jellyfish 

colonies and evaluates the colonies’ 

impacts on coastal fisheries, leveraging 

high-resolution imagery from UAVs. 

This will be achieved through the 

following objectives:   

1. Achieve a robust jellyfish bloom 

prediction model by implementing the 

following two critical steps:   

i. Creating and training a 

convolutional neural network 

(CNN) designed specifically for 

remote sensing image-based 

jellyfish bloom detection and 

prediction.   

ii. Achieving model tuning to a 

prediction accuracy of over 90%, 

achieving early warning capability 

is set as the goal.   

2. Combine environmental and fisheries 

data to create a model. This aims to 

broaden the model's detection 

accuracy and dependability across 

different marine conditions and 

account for prevalent non-

environmental detection image 

artifacts that reduce reliability.   

3. Assess the impact and biophysical 

marine ecosystem efficiency of the 

designed jellyfish bloom prediction 

system on coastal fisheries, addressing 

management and mitigation measures 

for ecological and economic impacts. 

System Methodology 

The research focuses on creating a fully 

integrated machine learning system 

capable of predicting jellyfish blooms 

whilst assessing their impact on the 

coastal fisheries region. This research 

utilizes high-precision UAV-based 

imagery alongside environmental data to 

construct a dependable early warning 

system. The model seeks to improve 

accuracy in detection, ensure effective 

adaptability of the model to different 

marine areas, and provide actionable data 

that can help fisheries reduce the 

environmental and economic impacts of 

jellyfish blooms. More specifically, this 

research plans to robustly design and 

train a CNN model for jellyfish detection, 

augment the model with environmental 

and fisheries data to increase its 

reliability, and evaluate the system's 

functionality in managing coastal 

fisheries. 

The study's methodology focuses on 

effective data acquisition, streamlined 

model training, and thorough validation. 

Data collection required numerous UAV 

flights at two specific coastal sites: 

Croabh Haven in the UK and Pruth Bay 

in Canada. Over 1,539 aerial images of 

different jellyfish bloom conditions and 

environmental settings were taken. 

Besides imagery, comprehensive 

environmental data sets were created, 

which integrated satellite-derived and in 

situ sensor data for sea surface 

temperature, salinity, chlorophyll 

concentration, and weather conditions. 

Additional data included productivity 

metrics from local fisheries, specifically 

fish catch data, to enable correlation 

assessments between bloom occurrences 

and fisheries activity. 
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Preprocessing was considered one of 

the most essential steps in ensuring the 

raw dataset's quality and uniformity. 

Marine biology specialists assisted in the 

labeling process to improve accuracy, as 

all images were annotated manually into 

two classes: 'Bloom present' and 'No 

bloom present'. Each image was scaled to 

500 × 500 pixels, which is optimal for 

detail retention as well as saving 

computational resources. To improve the 

model's generalization capacity, the 

dataset was expanded using data 

augmentation techniques, which included 

rotation, flipping, and brightness 

alteration. Timestamp-based 

environmental data synchronization was 

performed, ensuring the contextual 

information associated with each image 

was available when training a multi-

modal learning model. 

The earlier stages of the project were 

dedicated to building a convolutional 

neural network with VGG-16-based 

transfer learning. This strategy provided 

flexible pretrained weight utilization and 

some freezing on the final layers, specific 

to jellyfish bloom detection. An 

additional hybrid model architecture was 

also created to accommodate both image-

based and environmental data streams, 

allowing the model to disentangle 

sophisticated mappings between the 

visual patterns and contextual features of 

the environment. The efficiency of 

learning procedures was optimized 

concerning the learning rate, batch size, 

and number of epochs, which set the 

efficiency standards for the model’s 

output in a grid search method. The 

binary classification used a sigmoid 

function for the output layer, while cross-

entropy was used as the loss function for 

the training. 

The training and validation stage was 

meticulously carried out. The dataset was 

split into a 75% training subset and a 25% 

testing subset. Further, a validation 

subset was created to monitor overfitting 

during model training. K-fold cross-

validation was applied with five folds. 

This assessed whether the model's 

performance was consistent across 

varying data partitions. Multiple metrics 

were used to evaluate the model’s 

performance, including accuracy, 

precision, recall, F1-score, and area under 

the receiver operating characteristic 

curve (AUC). The developed model 

achieved a peak test accuracy of 97.5%, 

significantly exceeding the intended 

target of 90%. This also proved the 

model's reliability in detecting jellyfish 

blooms in marine environments.   

To evaluate the model's practicality, a 

comprehensive impact assessment was 

performed. Statistical correlation 

analyses were conducted to investigate 

the relationship between detected bloom 

events and fisheries productivity using 

Pearson correlation coefficients and 

linear regression models. These analyses 

directly quantified the impact of bloom 

events on fisheries, thereby enhancing 

adaptive management strategies for 

fisheries. Moreover, some scenario 

simulations were developed to assess 

how early warning systems could be 

utilized strategically, allowing fisheries 

to take action to reduce economic losses 

during bloom events. 

The implementation step aimed at 

creating a working tool from the 

developed model. The software was 

structured within the TensorFlow and 
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Keras ecosystem, which is 

complemented by Python libraries 

NumPy and OpenCV for image 

processing and Pandas for data 

manipulation. Scikit-learn and 

Statsmodels were utilized to incorporate 

environmental data and statistical data 

analysis. For the image augmentation and 

pre-processing, the Albumentations 

library expedited the workflow. The 

collection of images was continued using 

UAVs, particularly the DJI Phantom 4 

Pro drones with 4K cameras. The 

machine learning algorithms were 

executed on a powerful computing server 

with an NVIDIA RTX 3080 GPU (10GB 

VRAM), 64GB RAM, and an Intel i9, 

allowing fast training and evaluation of 

the algorithms. 

A prototype web-based dashboard was 

created to give users real-time 

visualization of jellyfish bloom forecasts 

to improve usability. It featured 

interactive heating maps of the bloom 

region, real-time notification for alert 

areas, and tools for data visualization to 

assess the impact of blooms and fisheries 

over time. Along with local fisheries 

stakeholders, the dashboard underwent 

usability and effectiveness testing. 

During the active bloom periods for both 

study sites, field validation trials were 

conducted, whereby model predictions 

were checked against manual 

observations to ascertain accuracy. Due 

to the system's alerts, fisheries managers 

noted an improved ability to anticipate 

and respond to events.   

This study presents an integrated 

machine learning framework that utilizes 

UAV-based imagery alongside 

environmental information and 

sophisticated neural network models to 

predict jellyfish blooms and evaluate 

their impact on coastal fisheries. The 

system achieved high detection accuracy 

and offered practical implementation 

solutions, reinforcing its capacity to 

significantly improve resilience and 

adaptive capacity within coastal fisheries 

and sustainable marine resource 

management. 

Results and Discussion 

The machine learning-based jellyfish 

bloom prediction system demonstrated 

strong performance across several 

evaluation metrics, validating the 

effectiveness of the developed CNN 

model and the integration of 

environmental data. This section presents 

the experimental results, performance 

analysis, and a detailed discussion of the 

system's practical implications for 

fisheries management. 

Model Performance 

Based on the VGG-16 architecture with 

fine-tuning for jellyfish bloom detection, 

the primary model achieved a peak test 

accuracy of 97.5%, surpassing the 

predefined objective of 90%. Figure 1 (to 

be inserted) illustrates the training and 

validation accuracy curves over 50 

epochs, revealing a steady improvement 

in model performance with minimal 

overfitting. The loss curves further 

confirmed the model's stable 

convergence. 
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Figure 1: Accuracy and Loss Curves.

Table 1: Performance metrics of the CNN. 

model. 

Metric Value 

Accuracy 97.5% 

Precision 95.2% 

Recall 96.8% 

F1-score 96.0% 

AUC 0.987 

 

Figure 2: Confusion Matrix. 

As illustrated in Figure 2 & table 1, the 

confusion matrix reports a 96.8% actual 

positive rate and 2.5% false positive rate, 

showing a very high sensitivity in 

detecting jellyfish blooms for the model. 

Misclassifications mostly happened in 

the highly ambiguous borderline cases 

where water patterns could resemble 

jellyfish formations under certain lighting 

and turbidity. 

Impact of Environmental Data 

In addition to image data, environmental 

parameters such as sea surface 

temperature (SST), salinity, and 

chlorophyll concentration were 

integrated into a hybrid model to test their 

impact on prediction robustness. A paired 

experiment compared the model’s 

performance with and without 

environmental data. Results showed an 

overall accuracy improvement of ~3% 

when environmental data were included, 

highlighting the contextual relevance of 

oceanographic conditions to jellyfish 

bloom formation. 

 

Figure 3: Model Performance Comparison 

Figure 3 presents a comparative bar 

chart of the model’s accuracy, precision, 

and recall across two configurations: 

image-only vs. hybrid (image + 
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environmental). The hybrid model 

consistently outperformed the image-

only model, confirming that 

environmental context enhances the 

predictive capability, especially in 

complex or ambiguous visual scenarios. 

Cross-Location Transferability 

A key objective of the study was to assess 

the model’s transferability across 

different marine environments. The 

dataset was split by location, training on 

Croabh Haven images and testing on 

Pruth Bay images (and vice versa) to 

validate this. The model retained over 

92% accuracy in cross-location testing, 

demonstrating substantial robustness. 

 

Figure 4: Misclassification Heatmap 

However, subtle differences were 

observed. For instance, images from 

Pruth Bay, characterized by higher 

turbidity and different jellyfish species, 

introduced slight accuracy drops. Figure 

4 (heat map to be inserted) visualizes the 

spatial distribution of prediction errors, 

revealing hotspots where 

misclassification was more frequent, 

primarily due to occlusions or highly 

reflective surfaces. 

Correlation with Fisheries Impact 

The jellyfish bloom detection results 

were correlated with fisheries 

productivity data to quantify the 

ecological and economic impact. A 

Pearson correlation coefficient of -0.78 

was recorded between bloom severity 

(measured by bloom area coverage) and 

fish catch volume, indicating a strong 

inverse relationship. This suggests that 

severe bloom events are consistently 

associated with significant declines in 

fisheries yield. 

Linear regression analysis further 

confirmed this trend, showing that for 

every 10% increase in bloom coverage, 

fisheries experienced an average 12% 

decline in daily catch. This quantitative 

insight underscores the utility of the early 

warning system in providing fisheries 

with actionable information to mitigate 

losses. 

Practicality of Early Warning System 

Field validation trials demonstrated the 

system’s practical potential. During 

bloom events, the early warning system 

provided alerts 6–8 hours in advance, 

allowing fisheries to reroute operations or 

implement defensive measures such as 

net barriers. Interviews with fisheries 

managers (summarized in Table 2) 

revealed that 85% found the system 

helpful and 70% reported improved 

operational readiness due to timely alerts. 

Table 2: Summary of fisheries feedback on 

system deployment. 

Feedback Aspect Positive 

Response (%) 

System usability 85% 

Improved operational 

preparedness 

70% 

Reduction in economic loss 

(reported) 

60% 

Desire for long-term 

integration 

75% 
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Discussion 

The developed CNN model's high 

accuracy and reliability validate the 

feasibility of using UAV-based imagery 

combined with machine learning to 

predict jellyfish blooms. Integrating 

environmental data further enhanced 

model performance, supporting the 

hypothesis that dynamic oceanographic 

conditions influence jellyfish blooms. 

The model’s ability to generalize across 

two distinct coastal sites confirms its 

transferability, a critical feature for real-

world applications with high 

environmental variability. One of the 

most significant findings is the strong 

correlation between bloom events and 

fisheries productivity. This demonstrates 

that the system detects blooms and 

provides meaningful insights into their 

impact, strengthening the case for 

integrating machine learning tools into 

fisheries management frameworks. With 

a 6–8-hour lead time, the early warning 

capability offers a tangible benefit by 

allowing fisheries to take pre-emptive 

actions. 

Some noted limitations do exist. The 

model’s effectiveness was further 

hindered in high turbidity and abnormal 

lighting conditions, requiring 

augmentation of the dataset to encompass 

more varied oceanic settings. 

Furthermore, although the UAV-derived 

method offers incredible detail, it is 

constrained by battery autonomy and 

range, indicating the prospective 

inclusion of satellite images for extended 

coverage in future work.   Additional 

research could incorporate deep learning 

models with incorporated time series 

data, such as RNNs, to advance 

predictive modelling of bloom dynamics. 

Additional real-time system features 

include mobile notifications and 

automated UAV patrols, which may 

enhance responsiveness and autonomy. 

Conclusion 

Incorporating machine learning 

techniques for predicting jellyfish bloom 

events provides a viable option for the 

stewardship of coastal environments and 

enhancing fishery activities. The study 

confirms that more sophisticated ML 

models, such as CNNs and RNNs, along 

with ensemble methods, can consider sea 

temperature, salinity, chlorophyll 

concentrations, and ocean currents as sea 

environment constituents in bloom 

prediction. With satellites, on-site 

monitoring, and machine learning 

algorithms, the responsiveness and 

precision of bloom detection were 

enhanced. This study's LSTM models 

captured time-dependent environmental 

data, while CNNs excelled with spatial 

data interpretation. These models 

outperformed conventional approaches in 

terms of prediction accuracy and were 

critical in providing timely alert systems 

for the fisheries management. 

In addition, this research emphasizes 

the need for ongoing ecosystem 

monitoring and the cooperation of 

scientists, data analysts, and fisheries 

managers. With ML, predictive analyses 

can assist in avoiding jellyfish bloom-

affected areas by modifying harvest 

schedules or repositioning aquaculture 

facilities. In essence, machine learning 

enables more efficient and scalable 

forecasting of jellyfish blooms, which in 

turn aids the creation of adaptive fisheries 

management plans and the preservation 

of marine ecosystems in a shifting ocean 

environment. These strategies are crucial 
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in the wake of evolving oceanic 

conditions. Future work should 

incorporate real-time data, augment 

regional frameworks, and increase model 

straightforwardness for practical 

application. 
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